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Radiometric Uncertainty (RU) Estimates

* Perturbation of Calibration Equation and Parameter uncertainties
* On-orbit RU estimates
e QOtherterms

» Required in order to understand the size and dependencies of the
primary contributors to the CrIS SDR uncertainties, for calibration
improvements, weather, process, trend, and inter-calibration
applications.



Radiometric Uncertainty Estimates

Simplified On-Orbit Radiometric Calibration Equation:
Rscene = Re{(clscene - C'SP) /(C'ICT_C’SP)} RICT with:

Nonlinearity Correction: C'=C-(1+2a, V,)
ICT Predicted Radiance: R = ¢&; B(T\¢7) + (1-8,c1) [ 0.5 B(T\cr rent measured) + 0-5 BT gef, modeled)]

Parameter Uncertainties:

Parameter Nominal Values 3-0 Uncertainty
Tt 280K 112.5 mK*
€cr 0.974-0.996 0.03
TicT, Refl, Measured 280K 1.5K
Tict, Refl, Modeled 280K 3K
a, LW band 0.01-0.03 V! 0.00403 V!
a, MW band 0.001-0.12 V! | 0.00128 - 0.00168 V!

*Exelis at-launch estimate

Following Tobin et al. (2013), Suomi-NPP CrlIS radiometric calibration uncertainty, J. Geophys. Res. Atmos., 118, 10,589-10,600, doi:10.1002/jgrd.508089.
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Example 3-sigma RU estimates

For a typical warm, ~clear sky spectrum
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Example 3-sigma RU estimates

Log scale RU distributions for one orbit of CrlS Earth view data,
including all FOVs and spectral channels within the band:
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» Uncertainties are greatly reduced due to re-analysis of the TVAC data and on-orbit FOV-2-
FOV analysis. In particular, MW band uncertainties are greatly reduced due to the high

degree of linearity of MW reference FOV9.
» Overall, RU is <0.3K (LW), <0.15K (MW), <0.15K (SW): Better than spec by approximately a

factor of 4.



Other Terms

Smaller contributors not currently accounted for in the
calibration algorithm or included in current RU estimates:

» Spectral Ringing
» Polarization Addressed in later slides
» Possible SW Nonlinearity

* Other smaller/negligible terms:

— Detector temperature changes, Changes in DA Bias tilt over 4 minutes,
Changes in optical flatness, OPD sample rate drift over 4 minutes,
Electronic gain drift over 4 minutes, Electronic delay drift over 4
minutes, FOV to FOV crosstalk in same band, FOV to FOV crosstalk
between bands, Stray light, Optics temperature change during cal,
Changes in channel spectra



Nonlinearity Refinements

Motivation and Methodology, and changes to NLC equation
and coefficients

Reprocessed dataset
Example changes in calibrated spectra



Nonlinearity Refinements

(Refinements developed since the Provisional Review)
Motivation

 To provide improved traceability of the Nonlinearity algorithm and coefficients to the CrIS TVAC
External Calibration Target residuals and analysis.

 This is most important for the LW band where all FOVs display a significant level of nonlinearity, and
less so for the MW band where some FOVs display high levels of linearity and can be used as an in-
orbit reference to assess the other MW FOVs.

Methodology
* Involves determination of the a, nonlinearity coefficients (other NL related terms are relatively well
known):

1. Initial values determined from analysis of TVAC ECT view data.

2. Change from pre-launch to in-orbit estimates based on analysis of Diagnostic Mode data (out-
of-band harmonics), leading to initial in-orbit values.

3. Followed by the selection of a reference FOV and adjustments of a, values for the remaining
FOVs to create optimal agreement with the reference FOV for Earth view data
Resulting changes to the NLC equation and coefficients

— New a, values (with respect to current operational values, includes an overall increase for all LW
FOVs, along with smaller refinements to improve FOV-2-FOV agreement for LW and MW bands)

— Equation change from C' =C/(1-2a,V) to C' =C* (1 +2a,V)
— New modulation efficiency (e, 4) values



Reprocessed Dataset

The refined CrlIS SDRs for the full mission are available at:
ftp://peate.ssec.wisc.edu/allData/products/results/cris/cspp/SDR_1_4b_ILS_NLC_v33a-04/

Differences with respect to the operational IDPS dataset:
1. Includes Nonlinearity algorithm and coefficient refinements*
2. Includes ILS algorithm and coefficient refinements*
3. Includes consistent SDR algorithm processing for the full mission
4. Processing takes place with ~24 hour latency to avoid missing packet issues

* The same Nonlinearity and ILS refinements are expected to be implemented in IDPS
processing with MX8.1 and EPv36 in February 2014.

Evaluations of the CrIS RU presented here use the reprocessed dataset. Some example
differences with respect to the operational IDPS processing are shown on the following
slides.
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Example changes:
New versus Old Nonlinearity Correction

SCRIS_npp_d20120920_t0007219_e001239: FOR =15 FOV =9
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LW stratospheric channels shift to colder brightness temperatures (order ~0.1K) everywhere.

For cold scenes, LW window channels also shift to colder brightness temperatures.
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Example changes: Long term FOV-2-FOV differences

LW (672-682 cm™) BT Differences with respect to FOV5

IDPS processing
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Reprocessing with the NLC refinements removes the inconsistencies in the IDPS time series and
also minimizes the magnitude of FOV-2-FOV differences.
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Evaluations of RU estimates
(“Cal/Val”)

e Aircraft underflights

e CrIS/VIIRS comparisons
* CrlIS/IASI comparisons
e CrIS/AIRS comparisons
e C(Clear sky Obs-Calc

» A range of techniques, with various levels of
uncertainty/statistics/traceability, to assess the CrlS
SDRs and associated RU estimates.
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May 2013 Suomi-NPP JPSS Aircraft Campaign

Scanning-HIS evaluations of CrIS Calibration
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May 15 Underflight example:
S-HIS and CrIS 895-900 cm™ BTs overlaid on VIIRS true color image
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Double Obs-Calc Comparison Methodology and Uncertainty
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S-HIS Calibration, Calibration Verification, and Traceability

NIST TXR Validation of S-HIS Radiances

~— chamber
— AERI blackbody

* Pre and post deployment end-to-end
calibration verification

 Instrument calibration during flight using
on-board calibration blackbodies

* Periodic end-to-end radiance evaluations
under flight-like conditions with NIST
transfer sensors
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CrIS/S-HIS Underflight Results

Hamming apodization
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» Aircraft underflights provide periodic end-to-end verification of CrIS RU estimates with
0.1-0.2K uncertainty over most of the spectrum.
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CrIS/VIIRS comparisons

Example Daily Comparisons, M15 band @ 10.8um, Descending

CrIS convolved with VIIRS SRF VIIRS mean within CrIS FOVs
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» Each day includes ~500,000 colocations which pass a spatial uniformity test
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CrIS/VIIRS Daily Mean Differences
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» CrIS/VIIRS daily mean differences are < 0.1K and trends are < 10 mK/yr 19
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SNO Comparison Methodology

The SNO comparison technique is aimed at minimizing differences in the
spatial/temporal collocation process and providing well understood
uncertainties to identify persistent biases between two sensors.
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A sample SNO showing CrlS and AIRS LW mean and standard deviation spectra for Collocation difference distributions for
footprints within 100 km of the SNO location. two example SNOs collected on 20120816. a large ensemble of SNOs for various

ranges of spatial variability.
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SNO Datasets

CrIS/AIRS: 1.2M “Big Circle” SNOs collected to date (March 2012 to Nov 2013);
20 minute window; -30 to 30 deg scan angle, <=2 deg scan angle diff.
AIRS V5 L1B; CrIS ADL/CSPP SDR_1.4b_NLC_ILS

2510 cm'1 CrIS/AIRS SNO BTs 835 cm? CrIS/AIRS SNO BT lefs

320
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CrIS/IASI SNO locations

CrIS/1ASI-A: 5270 “Big Circle” SNOs collected to date (March 2012 to Nov 2013);
20 minute window; nadir. ~20 days of coincidences, ~30 day gaps,
~half at +72.4 deg, ~half at -72.4 deg.
IASI_xxx_1C_MO02; CrIS ADL/CSPP SDR_1.4b_NLC_ILS
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Results shown for IDPS
processing and with the
reprocessed dataset
including the NLC
refinements presented
earlier.

Differences of ~0.2K or less

NLC refinements:
Improved agreement in the
LW band.

Negligible changes in the
the MW band (as
expected).

CriS/IASI Northern SNOs

Hamming apodization

: mean CrlS

=
=
} :
=
. =
B
e
e —SEERIRRRr
T :
_—
— :
—_—
- —— :

o :
Ak ==
AR :

—
=
:’_-.

'

1| Mean Difference

*| * Uncertainty

3 : : : : :
< ok W"‘“" g _ L MI*UW’ h \ 1/
! . . : | : I% ‘I
600 800 1000 1200 1400 1600 1800

wavenumber



Summary of SNO results
for 6 representative spectral regions,
and VIIRS/CrIS comparisons:
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LW differences display only small dependence on scene BT
for both IASI and AIRS SNOs.

MW differences are relatively independent of scene BT for
IASI and for AIRS at 1382-1408 cm1; Differences for AIRS at
1585-1600 cm! range from ~+0.3K at 200K to -0.1K at 265K.

SW differences are relatively flat above ~240K; Below ~230K
larger differences between all three sensors are observed.

Consistent with SNO results shown in L. Strow presentation,
and reported by L. Wang et al. at NOAA STAR.
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Bias (K)

Std (K)

c/o Larrabee Strow, UMBC:

Clear Sky Obs-Calc Analyses [ T—weommmmmms T |
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1r —— Difference 1
> Behavior of mean biases and standard deviation of = 0.5} .

obs-calcs are consistent with forward model and
atmospheric state uncertainties and imply very
good radiometric performance for CrlS.
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Continuing Work:
Calibration and RU Refinements
Spectral Ringing

Polarization
SW band biases
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Spectral Ringing

Considered to be part of the RU budget, but is covered separately
in Dan Mooney’s talk

For the large majority of spectral channels, the associated artifacts
are very small, and with apodization are negligible everywhere.
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Error from Scene Mirror Induced Polarization

CrIS uses a 45° gold scene mirror that provides low sensitivity to polarization; no
correction is included in the SDR algorithm/processing.

However, it seems almost certain that CrIS should have polarization effects of ~0.1 K for
especially warm and cold brightness temperatures in some spectral regions.

A correction should be developed based on CrIS characterization tests yet to be
conducted (measurements of scene mirror degree of polarization, p,, and
interferometer polarization sensitivity, p,)

Radiance error dependence ~2p.p; (N — B,c)
Suggestions of this type of behavior in CrIS/VIIRS comparisons vs. scan angle:

Scan Angle and Scene BT dependence of VIIRS/CrIS Comparisons at 10.8um*
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CrIS cross track scan index

* Biases removed for mean of INDICES 1-10 & 80-90 -



SW Band Biases

FOV-2-FOV analyses and differences with
respect to other sensors suggest small
artifacts in the SW band, both in Mean
biases and FOV-2-FOV differences.

E.g. Differences with respect to IAS| —p

Mechanisms investigated to date:
— Spectral shift
— Thermal SP view contamination
— Solar SP view contamination
— Noise
— Polarization

» Low level Nonlinearity
* Displays FOV dependent behavior

* Has plausible spectral and scene level
dependencies
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Summary and Conclusions

On-orbit Radiometric Uncertainty (RU) characterized:

— Based on careful estimation of 3-sigma uncertainties of the primary calibration parameters and
perturbation of the radiometric calibration equation

— Overall RU estimates are < 0.3K (LW), < 0.15K (MW), < 0.15 K (SW)

Nonlinearity correction algorithm and coefficients refined
— Provides improved traceability of the nonlinearity coefficients to the TVAC External Calibration Target
— Refinements reduce overall RU in LW band and reduce FOV dependence in LW and MW bands
— SDRs reprocessed using NLC (and ILS) refinements and distributed

CrlS SDRs and RU estimates have undergone extensive verification/evaluation over a
range of representative conditions
— Periodic aircraft underflights provide high quality, Sl traceable verification of the CrIS RU

— CrIS/VIIRS comparisons imply excellent stability of both sensors, and scene BT dependence further
characterized and diagnosed

— SNOs of CrIS/AIRS and CrlIS/IASI show excellent mean agreement and behavior with scene temperature
— Clear sky obs-calcs imply very good CrlIS radiometric performance

Areas of further refinement have been identified and are under investigation
— Spectral Ringing
— Polarization
— Possible low level SW band nonlinearity
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